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ABSTRACT /

Commonality analysis is an attempt to understand the
relative predlctlve power of the regressor variables, both
1nd1vIHnally and in combination. The squared multiple correlation is’

- broken up into elements a551gned to each individual regressor and to
each possible combinatiolt of regressors. The elements have the )
property that the appropriate sums not only add to sguared multiple
correlations with all regressors, but also to the squared naultipie
correlation of any subset of variables, including the simple
corrélations. Conmonallty analysis may be used as a procedure to
guide a stepwise regression. Commonality analysis does not tell us
anything that cannot be deduced fror a table of squared multiple
correlations. However, commonality analysis does help us make

-conparisons in an organized manner. The purpose of .this paper is to
explore connonalltx .procedures, to develop its properties, and to -
present a multivariate generalization Jfor the explorations of
commonality in a situation where there is -more than one regressor. A
new computer~or1ented algorlthm is also presented. (guthor/BJG)
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~underlying linear relationahip the experimenter ehouid select

COMMONALITY . "

EOYCATION & WELFARE

. A
s eanon o " Albert X, Beaton
MENT HAS BEEN REPRO .

Regression-analyaia is often used in both the physical

and social sciences. However, regréssion analysis is. most useful

when the so-called independent variables are truly independent in

the sense .that they can be experimentally nmnundatai e.8.,ian -

s
l

experimenter can fix the values of all but one independent variable,
_variable to manipulate, and so forth, The principles of experi- N

mental design show that for a given sample gize }nd agssuming, an

.3

are most precise ceteria paribus in the sense th

’

errors are smallest In this case, the squared multiple eorrelation

-" "

is simply the sum of the squares of the simple correlations between
the independent and depéndent variables. ’ )

In survey research, random samples of persona are selected
‘from a deffined population.: Most variables cannot be indcpendently
manipulated 88 in a designed experiment; although stratified
aampling may ‘avoid intercorrelation ‘among some reéressors, it

\ . .
ig very_difficult to stratify on many variables. Unbiased estimahes_

<
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of‘parameters can’be computed from such samples, but the precision
of the estimates is lessened by correlations among regressor

variables. Furthermore, the regressor variables do not contribute
indepcndently'to'the sguared mul{iple correlation, for- the squared

multiple correlation may be either larger or smaller ‘than the - sum

“l ~

of the squared simple correlations. Regression analv,is may
AR

become more a tool for measuring correlation’or Predictive power

>

than for estimating parameters of a causal system. . i
Commonality analysis is an attempé to understand the i ,

relative predictive power ‘of the regressor variables, both

individually and in combination., The squared multiple Forrelation'

is broken - ‘up into elements assigned to each” in8ividual regreséon

.t

and to each possible combination of regressors, The elements have

"

the property that the appropriate sums not only add to squared

L

multiple correlations with all regresBors, but al o to the squared
multiple correlation of any subset of variables,- including the
simple correlations. Commonality analysis may be used as a pro-

— cedure to guide a step;ise regression., | -

Commondlity analysis does not tell uys anything that cannot
be deduced from a table of squaraimultiple correlations. However,
commonality analysis does'help us make comparisons in an organized

" manner. ) >

Commonality analysis is not new, Kempthorneu(l9514>p. 304fFF)

suggests the Procedure briefly, Creager and Valentine (1962) credit

Bottenberg and Ward (1963) for the same procedure although with a

\

"differcnt focus. Newton and Spurrell (1967a, 1967b) arrived at the




same method and present interbreted examples. The name

commonality was suggested by Mood (1971) who derived the solution

independently. A generalization for sets of variables was reported

by Wisler (1969) who also showed the relationship between

commonality analysis and part correlations,

4

Creager (1971a) has

commented on the procedure and compared it to a factor, analytic

procedure (1971b)., Mayesgke et al (1969,

1973) have used the

$Qu.Thﬂ purpose of this paper is to explore the procedure
" .

éechniaue extensively.

further, to develop “d.ts yroperties, and to present a multivariate

generalization for the explorations of commonality in a situation’

vhere there is more than one regressand A new computer-oriente&

algorithm is also Presented:
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2.0 Univariate Commonality

. Univariate regression analysis assumes a linear model

N .‘x = X8 A+ e

[ 2 7

o+

-where y is 8 columna%ector with elements Yy (L = 1,2,...,N)

¥

representing the observed wvalues of the regressand (also called:

dependent variables or criterion), X is an N x m matrix with

1

_elements Xij (j = 1,2,...,m) Icpresenting the observed values of

the m regressor (also called.independent or predictor) variables

for the N observations, B is a column vector of m unknown regressio
coe{ficiehts, and £ is a column vector with elementg cirepresenting
the unknown residuals (also called errors) For simplicity, y is

assumed to have a zero mean although all equations can be modified

-

to allow a non-zero Va]ue' X is of rank m, the eiuare assumeq

NID(O0,c )

-

Commonality anal&?is requires the definition of the regressio
- - S .
ctquations between y and each possible combination of.the m vari-

-

ables in X. To identify these regressions we define a.submodel

y o= XgBg e

~
P

where the subscript s represents in ascending order the n indices of
the~co]umns of X contained in the model. We also define the com-
plcmcntary subscript 8 wh%ch represents the n_ =m-n_ indices in

r}
nqcondlng order of all colens of X.not fncluded in 8. For example,

if X has ¢ variables and s = 3), then g; is an N by 2 ‘matrix
contalndng the firgt and third columnsg of X, § = (2456), and XF

: > . . . :
s an N by 4 matrix containing the second, fourth, fifth and sixth

5.
.
v “
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columns of X, 8 may be dropped 1f it''contains all m subscripts
-~ 9 . a

in which case 8 is the null set, y does hot\requite/subscript.

e 1is NID(O,OZ) where
8 8

o

P DN Y [ ' J ' -] F
®s %a 7€ ¢ Boglig¥y - XX (X)) X X8,

and'BE’ is the regression coefficients corresponding to the

no variables not included ir s and ¢ is the estimate of ¢ computed

using all variables in the model.

s -’

The statistics usually computed in a regrépsipﬁ analysis

are estimates of the regression coefficients

a - ' “l,4, .
88 (szs? qu H

predicted values of the regressand;’

Vg " sts ;

th tesidua; vector ,

€, ™y "vsts H

.

the residual vg%iaﬂce

N . a2 1 jA'A
I ™. N-ns-l Eg€g 3




-x'x» = 0 or B~ = 0, that is, if X

-

and of ‘the squared;mulciple correlation (SMC) . = :

K ~ -
a2 Vs Y,
y‘ ' . <
Yy vt

." The Rss will ozdinarily be.written without the citcumflex.

Simple (Pearson product-moment) correiations may be written as rii
for the correlation of columns Xi and XJ of X and as,ryJ for the
correlation of Y with XJZ. A :

The ésfimatesﬁof parameters for a subset & are not in

7 general the same estimates of the parametera in thé: model as those

in which)all regressors ere included For example,

w

Tex
14

R ’B -

~8

oo >

~' ~J
s.8' (x

\
-t

N

which indicates B, is the “same as ps;; only 1f = . .

*

. Y~ )
“and X: are. uncorrelated or
8 .

. -

the regression coefficients of X~ afe zero given X

* XS \ ) ' *
. " .
i . .
A ~

¥ .
\ . . .
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227 ; .2 é" "2 2.2 m m '€ o~
o] = lal + 202 + voat f Qg + 2 X 8 8
y- TR a1 geitr 104°°V45

: A2, ) estimated o~
where the o1 8 are the /variances of the x's, the covij'a are

T —
»

> N A2 - ‘e
their covariances, and oe is the unpredictable variance, The

‘variance of vy, therefore, can be broken into two parvz/

Newton and Spurrell (1967a) diacuss two facets of multiple

regression analysig: prediction and operation. These two uses compl

\

'~ ment cach other since an underatanding of 8 process can lead to more

: efficiont predfction and prediction {g often the measure of under-

» “

standing uf a prOcesa. ‘In both cases one may wish to remove
-variables of little importance from a set of available variables.
«

This is, of course, one of the purposes of the analysis of vari-

ance which is 80 often used to test hypotheses that one or more'

rcgreqajon cpefricienta Are not appreciably different from zero,

a hypnhhvuin oquiv%lnnt to Loutinr whether or not some Jndopendvnt

vuliableb are of little predictive Importance. ~
If the independent variables are mutually uncorrelated then

the s(nndard analyris of variance is quite useful, for we can sece

which, §4f any, of the independent variables contribute significantly

8
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to prediction. If “the x's are correlated however, an orthogonal ,anal
of variance requires an’ grior ordering of . the variablea as in

W7 2.2 2. .2 2. a2 2. s a2
9. *B1O1 + By 1051 + B3 103,12 + ...t Bn.12...0-1%n.12. . .0~
y

h @

( * . .

where the B's and o's are partial regression coefficients and’
, . -

variances, respectively; that is, 81.12...3-l°j.12...j-1

4

-~ M A\l

-~

represents the regression coefficient and variance of variable 1
with variables 1 rhrouéh J-1 partialed out. This procedure is

useful if there is an a priori reason for ordering these inde-

—

pendent variables, but there are m! different ﬁays that the -

variables may be ordered and different orderings will usually affect

-

the measured contribution to the predicted sum of squares. The

problem 1is that any variance in_ common between two variables is

allocated entirely to.the {ormer of rhe two variableg.in an ordering;
any predictive power a third variable hasrin'eommon with two in en
earlier position ie allocated entirely to the first two; and so
forth. Thelordering, therefore, mef“iqdeed affect our estimate of

the importance of independent variables.“\\

i



. squared multiple correlation into elements associated with each

ot all elements equals the squared multiple correlation. It 1is also r

" either or both of two variables total to the squared ‘multiple

.

EKC

wll Toxt Provided by ERIC

_the contribution of either is not affected by the entrance of the

-+ /The purpose of commonality analysis is to partition a

(regressor) variable and. into elements associated with each

possible combination of regressors. The analysis shows 1in some

sense to what extent each individual variable affects the SMC

)

correlation by'itself and how much it affects the SMC in combination

é

with other variables, If two variables have no commonality, then

other var1ab1e into the regression equation, 1If two variables
have a non-zero commonality, then the entry of either variable
into 8 regression equation will affect the contribution of Lhe

L4

other,

Commonality analysis gemerates elements such that the sum

qulred that the sum of all elements asgociated with a gingle
variable total to the squared simple correlation of that variable
with a regressand, that the.sum of all elements associated with
- %
corrclatlon of those two variables with the regressand, and so
forth, "o
These relationships can be expressed for the two~regressor

(m=2) case as ] \

2

Ry12

= U1 + U2 + 012. v (1)

where U, is the "uniqueness' or "unique" contributiofi of X, to the
SMC, U2 1s the "unique" contribution of 42, and C12 is the common

element or commonallity, The uniquenesses are considered first

10




< € . . - . .
order commonalities, The contribution of X, alone is
) ¢ .v o 2
. tyl Ul + ClZ

.and the contribution of X2 alone .is

‘2. —
,ty2 ] 2 + C12 . | r

'
-

.t . (. .
The relationships, in équations 1.2, and 3 can’ be written in

matrix form as

R = GC , (4)
’ yheie
FRZ l F. s
y(1) 10 v,
) - 0 1 , N (5)
2 - U
, r Ry(2 ’9 - 1 1 9 B 2
) C |
. o2 L %12 |
L ¥ (12)

i
-

We can then golve equation 5. for

the commonality by
C = G‘lr . : (6>

in which

0 -1 3 ' '
v-l ‘

» L] "] 0 .1
1 1 -1




and the explicit solution for C is
- . L 4

) .
' -m;12 - Riz | \Y\l‘ : (1,
u, = Rilz - nil T . ‘E(’B)
Cip ® R;\l + R:Z » R:u : (9)
fU] and ﬁz are iﬁ fact sums og squares and aa'chh m;st be no;-

Negat ive. 012 may be eithcg ponltive.”negatlchlor getdi
The logic for the three-~variable case is similar. There are

' ' 23~1 possiblé combinations of variables and, therefore, %

3

possible SMC's. The definition of the SMC's in terms of they

-

commonalities are

LY
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- 2 ] °
RE {2 o o 1 1 o, 1f]|y |
2iloc 1 o 1.0 1 1llu -
. 2 2
k2 1o 0o 1 o 1 1 -1{lu
. 3 3
. RZ1=l1 1 0o 1 1 1 1l]le¢
12 12
) .
Reg{ 2.0 1 1 1 1 1ffc,
2
Ryq 0 1 1 101 ad 1. 023*&
2 "
R 1 1 171 1 1 1lle
LT N JL 123 ]
. ) ]
solving for the commonalities, we g’ind o
vy U 0 0 0 o0 -1 1 “’“qxﬁfﬁ
o
v, o ®o o0 TiE o 1] g2
) 2
v o 0 o0 -1 o0 .0 1] | r?
3 T ) 3
' 2
2 - - - ¥
12 0 0 -1 o 1 1 -1} |=&Z -
. ) ) 2
c,5 0 -1 0 1 o 1 -1f|r%
'y ) 2
Cyy 1 0 0 1 1 0 -1 R)s
: 2
C.. 1 1 1 -1 -1 -1 1} |=wr
= 123 123




Au “the compionality vector becomes more complex, it iwu

us¢ful to organize the elements into a commonality table such

as shown in Figure 1

(INSERT FIGURE 1 ABOUT HERE)

The nargin on- the right-hand side contains the vector of common-

ality coefficients and sums to RilZ m* The columns in the body

of the table fhclude the eléments .0f each regressor ‘and thus these
columns Sum to the squared simple correlations.

. ' ! - L]
Some authors (c.g.-Maycske et al,1969 ) have found the -

ality table hore. usefull\when unitized, that is, when all

common

elements are divided by the

- In this case; the element in the
lower right-hand corney

instead of to the SMG. tized elements can be thought of as

proportions (percents) of predictable variance instead of pro-

portions (percents) of total vériance.

The generalization of commonality to four or more 1ndependent

varlables is strniyhtforward If there are m variables,

-

then we have
Moo equations in M unknpwns formed hy dcftnlnp cach possihile

SMC as the sun uf all elemcnts common to its regressors. The forma~

a much simpler procedure and avoid the solutjon of large sets of
equations. The size of the commonality table mdy also be rcduccd
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_tion gft;ﬂ witH xj when all other variables are regressed

. pz codure for stepwiee regression analysis, If the research aim

3
e

" out of X/, -The donmonalities can then ‘be expreésed in terms of

" these squared part”correlations.
v,

3
’

them measured ag a reaidual from one Or more other variables. (Partial

correlations measure the Variablee as residuals) The .part
\correlation
- o . T, ,~T, .. .T I
- ._“rry(l.Z)(: 01 "02712 o 4
. 2 1.

A ~
1\ , - .
) . \y N~ . ’
. . The ' artitioning of the SMC is, then, . ‘ . ~/
‘~ , ‘§§\ 'n n, n. " n n - »
' RZ’;; :f?(: -F}ES :25 c 4-}55 :Es : -
4 " Yy8 i 13 Gijk e o

 dml A=l g=i+1 . i=1 f=i4+1 k-J+l

. -,
Wislcr (1969) has expressed.commonalities in terms of part
correlations which have been discussed by DuBois(1957), A part

correlacion is .the correlation between two variables ‘with one of

] - L

.

'-'.\\ s Vler

" A -
¢
’, »

.18 the correlation of y. with kl Z’ﬁMerg X, 5 18 the
x1 from the %inear regression of™ xl.on X2 +- Wigler has

that uniqueness for any variable Xj is the squared part correla-

J

A\ ' . . ‘ J

Since'commonality analysis may be used ‘for decQ%Eng which
regrcsnor variables to include in a regression equation it 145 a
is solely maximization of prediction for a given number of vari-

ab&os, thon commonality nnalysis is - unnccessary since all possible

€

16

¥ . + . . '

s
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SMC's aré'computed 4s part of a commonality analysis. Stepwise
. - ]

regression may. proceed as follows:

K

Using Newton and Spurrell (1967b) Rule 1 which maximizes the
reduction in residual sum of squares at each stage of the re- .
gression by adding. the variable that reduces the SMC the most,
we would simply ddd the variable with the highest sum of commonalities
we would then draw a. vertical line through that column and a hori-
zontal line through each row which contains a commonality in that
column. We would then sum the columnsg again, resulting in new

totals that would correepond to the. covariance of the three re- .

\maining variables with the largest partialed Out. After selecting
a8 second variable, we would cross out the associat/f’rowa and;

columns, -retotal and proceed Thip procedureveorresponds to

.

adding the variable with the largest partialed correlation.

"~ . ‘l Pl

Newton_ and Spurrell suggest three other rules, includingZ(Z)

/

selecting the variable'with the largest primazy (uniqne) elé,ent

(3) 'selecting variables in which the uniqueness is large compared

-

with any related secondary element, and (4) selecting only ore
\

variable inciuded in the large positive gecondary element./




Significance tests are not known for all cpmﬁénalities, but the

uniqueness Uj is the contribution of xngo the SMC after all ~

other regressors are included in the regressor equltionl. The

test for a significant additional contribution to the SMC is

\ ) s
¢

U
1 —_— :

“yl2...om )

|

the square root of which is distribﬁced .88 t with N-m-1 degrees
$f freedom. This significance .test is eqdivalen; to testing that
. . . i .
the partial regression coefficient Bj = 0., An ipsignificant P(
r t indicates that the contribution to Rz of X,-is8 con-
yl2...d 3
istent with the hypotbelia that Bj is zero and the value Uj is

e to sampling error. The‘individual tests oﬁ many partial

M )
r gtesaion coefficients are commonl» used although the tests are
u?t strictly 1ndependent. . % I '

ﬁ The significance.of the contribution of several or all

variables to the SMC may be calculated by summing the unique
‘ L)

contributions of the several va;iabfos and their common elements.
( ~ S .
For example, 1f m = 4, the test of the contribution of x3 ang X4

would be o ' .

2 S g
N-s T IS

" where C* is the sum of thel elements that would be exéiuded’froﬁ

the SMC 1if the K regressors were ¢fppped. This test is equivalent

"to testing that wll K Bj'a re simulteneoualy zecro.

18
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.- Although there ie no known direct test of ‘the eignificance-

, of a commonality, we may judge t“eir size under ge "tain circumetances~
For. example, if m = 4 and we are interested in the magnitude of
034, then we might test the hypotheses.

. '.. \

>
- P‘

ia

4t Cyy = 0 -

B,/ : U, + U 54 =.,

£

as shown above. If all three hypotheses are accepted, then

034 . is not inconsistent with\a pOpulation value of zero. .

If H3 and H4 are accepted but H34 rejected then we may conclude

theé C34 is non—zero. however, ?3 or H4 is not accepted

then H34 does not isolate 034 and any inferences are dubious,

This procedure can' be used recursively for more complex common-

alities, g

~

. This testing proceduye has severe inferential problems even

3 . -

\
though examples.where H3 and H4 are accepited while H34 are rejected

are easy totconstruct. The problem is that if the actual population

3

values of .t e uniquenesses of U

!
4

the value 032 must also be zero, uniess X

3 and U4 were precisely-zero, then

3 and xa are perfectly

corrclatéd.invwhich case C34 is indeterminalte-. It is, therefore,

problematie £ ccept zero values €for U ané U then.contfnue . \

P . 3 4nd Yy
hd size of C.,. ‘ 'k '

to question t 34 5
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3;0_ Numericallzxample ‘ ' _ s

a ' - .
. The purpose of this section is to show what, commonality table looks -

»

like and tO’give some hints as‘co how one might look at a.table. Computational

procedures will be discussed in section 7. ' o ) B

e

Figure 3~ l displays all poSsible squared multiple” correlations between

one regressand and four regressors. These five variables were collected on

a.sample of eighty studéan.t

(INSERT FIGURE 3-1 ABOUT HERE) T

Figure 3-2 dlsplays a commonality table. The SMC with all regressors

enbored is .6825 which indicates that over

H
be - explained by these four variables.

682’of the sum of squares of Y can

The F statistichfor this SMG 18 40.30

(nd£=4 »75) which i7/highly significant. The sinple 8quared correlationg rénge

from 3967 to .6357 and are individually highly significant when subjected to

We conclude, therefore,

|
1

the ordinary tesl/for the significance of a correlation.
| :

5 <0

i .




M -

3 Figure 3<1 ' -

Squared Muléigle Correlations (r)

. - for 411 combinitions of 4 predictors )
. . . R -8 )
- 1 0.3967 . "1
‘2 044643 2
T 3 0.5374 12
- folt . 0.5269 3.
5 o.soaot$ 13
6 0.5783 - 23
7 0.6245 123
8 0.6351 4
- 9 Ve 668 14
. 10 0.6443 - 24
11 0.6707 124
12 0.4528 34 .
13 0.682F 134
14 046571 234
‘15 0.6826 1234
! A




some predictable vari&e\worth;

(INSERT FIGURE 3-2 ABOUT HERE)
14
- -8
\ '
\“ .
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Figure 3-2.
TEST OF COMMINALITY PRIGRAM

FOUR VARIABLE PRIBLEM

THE DEPENDENT' VARIABLE IS

SET ACIINYM : SET 1
F1RST ORDER .

S utx) , ‘ 0.0255
SECOND OJRDER }
212 . . . 0.0038
13 . 0.0009
C 14 - 00207
c 23 : . . .
T 2?4 ! :
T 34
THIRD ORDER .
£ 123 - . 0.0030
s 124 oo 6.0311
C 1346 0.0264%
C 234 ‘ ‘
FOURTH DROE
C 1236 0.2853
R2(X) (squared simple correlation)?+3967
R2(TOUr )(squared multlp]e . 0.68?6
.. . correlatdon) ! :
PCNT 00374
4 .
? =
175 40.30 ‘
xl: t75 = 2.45‘

Xyt o= L34
X3r t75 1.6§
x43 t75 = 3,70 ¢

" SET 2

0.0005
0,0038

0.0018
0.0160

0.0030
0.0311

0.1228

0.2853
C.4643
0.6826

0.0007

L)

SET 3

g.0119 .

" 0.0009

0.0018

0.0030

10,0264
0.1228

0.2853.

0.5269

0.6826

0.017%

SET 4

0.0581

0.0207"

" 0.01569
0.0747

0.9311
"0e0254%
0.1228
0.2853
0e5351
‘0.6825%

" 0.0852




~plain this phenomenon. Both weight and speed are important to,

.weight’and'Speeﬂ are known, one would expect to mékefa'muoh better
«preﬁiﬁtion of euccess using both variables to select fast, heavy

mefA rather than just eelecting the fastest regardless of weight or

Tn;}e are no negative commonalifties in,this example. Negative

4 N . .
commonalities are possible but not common in educational data. A
' ~ ’ * ..

negative conmonelit{\indicates that one variable actually confounds

the predictive power of .another. A hypothetical example may ex-

AN
success as & professional football player and each would be

moderate]y correlated with a measure of euccess in football., Weigh

and speed are presumably negatively'correlated and would have a

negative commonaltty in predicting success in football, If both

* N

heaviest regard_leé?,of'sp.eed. Thus the negative commonality in-,

~

dicates that explanatory’power of either.is greater when the other
B I )

is also used. - )
. ‘ ‘

The uniquenesses are shown at the top of the figure 3 2 and
the t statistics at the bottom. ‘The uniquenesses indicate the
amount of variance explained by each variable after all other
variables aré entered into the equation. Xl and Xa have signifi-
cant large uniquenesses and t statistics. Xz does not look worth
keeping, and X3 could be a sampling fluctuation and seems to add
little.

Since one and perhaps two varietles add little, we ask w;:re
the orlginal predictive power of these“variables went. The common-
ality C1234 indicates that 28% of the explained sum of squares is

common to the four variables, that is, entering any one of the four

variables into the equution will increase the SMC by at lcast .28,

<4
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s
.

Clearly, much ofitﬁe axclanatory power of these four variables
is'redundant. n

The commonality Cési is fairly large indicating that"the
use of any of,these'variables will explain some of the same
predictable variance as the others. The next largest ;alue is

.
Céd which shows the common element of X3 and X4.

* To summarize, the table seemsg to indicate that Xz, 3 and
xa predict much the same part of the explainable sum of Bquares,
in fact, the predictive power of X2 is almost completely common
to the otﬁers. Since X4 is most powerful and Xl is most different
_?roﬁ Xa,,we may expect that thq SMC R;l& is qcite large,

Flgure 3-1 shows us that this SMC 1s .6684 or just .014% less
than the.$MC with 811 four variables, K

. |




_ 4.0 Two-Variable Commonality

Commonality iszg complex measure so it may Be.instructive to look

carefully at the simple case of two regressor variables.

ar v

Thé squared multiple correlation can be expressed as a function of

-

three simple correlations by- ¥
2 2 ‘
) r;i + ry2 - 2ryl y2r12
(.1) Ry(lz) = .
12

and the commonality written as

\

- 2 2 2
(2) Cia =Ty v, Ry 12

The commonality is, therefore, a contrast between “what'th'e SMC would have

been if xl and Xé were uncorrelated (i.e. 31 + ryz) and what the actual

SMC 15 (1,e. Ri&z” Substituting (1) into (2), we have Dy
2 2. 2 .2 ,
Zy1TyF12 ¢ Tnt1a T Tt - _
12 .

Sy ; v
If r,, = 0, then the SMC is thefium of the squares of the two simple

correlation,pocfficients and thus the commonality is .zero and the uniqueness

: 2 2
of U1 is then Ryl -and of U2 is Ry2 If r12 does not equal zero, then the

SM¢ may be larger or smabler than /

yl y2
product r 1 2 12 and the magnitude of 7

'The complexity of the relationship between r

» depending on the sign of the

12? c12’ and lez is shown

graphically in Figure 4-1._ For this graph, ryl and ry2 are considered fixcd

constants, .3 and .2, respectively. Given particular values of ryl and r X
b
T1p cannot in general range over the entire area bctween ~1 and +1 since

extremely hlgh or cxtremely low values would result in a non-positive definite

correlation matrrix. The boundaries for pcrmissiblc r

\-* e'_,f_‘- >
- 26

f .
N e
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,vector OY is the square root of R2

e~ ey

4

-V Too < ro.r.. + -
12 £ TyyTyy 2 202
(ry, 1"’?2 1)

r,.r )
Y1°Y2 2 0002 -
, , (rn 1) (rYzl)/

which for this example givea the boundary .8747 < £, < 9947

Figure 4-1 graphs: the. values of Rle and C12 as functipnsg?f rlZ over

%

the permissible range. All negative values of r,, are associated with

negative C12 and very high positive values also have negative commonaldtiesf

The value of C12 is still small at its saximum (r .667) where the,' 1

-

S
squared multiple correlation is at’ its minimum. The C,. curve is a (displaced)
12 -

mirror image.of the RYlZ

This graph brings out the important point that the commonality may.

also be associated with high positive values of r12 -

1

The relationship of Xl, Xz, ‘and Y are shown graphically ag in Figure 4-2
The twb.vcctors, Xl and X2 are of-unit length and represent variables Xl and
Xz; the vector Y represents the projection of the (unit length) vector Y on

the space spanned by Xl and X2 The distance 0A is r Y1’ OB is 2, and 0OC is

: T12+ ‘The length of the vector OY is-the multiple correlation RY

3 <

The distanceof Ay is U 1/2 and the distance B; is U%/Z « The

+ R2, which is what ¥ would
. yl - y2
. L
be 1if Xl was orthogonal to X2 while OA(r l) and OB(r 2) remained

constarnt, (OC would be zero.) Since the commonality is the _

»

squdred of OY minus the square of OY OY > OY implies a negative
,$ r

commonality, ' .

Figure 4-3 ghows the effect of r12 on the multiple correlation

and commonality over the range of permissible values while holding
4 ,

T 1 and ry2 Congtant, First, the terminus of any vector repre-
{ 3

J i

-senting the multipJe correlation must fall on the line Y'Y" since

its projection’ ¢g.x1 must be orthogonal and of length OA. The
A s ¢ -
- - 1!;;

x5




-

.correlated highly enough, then the vector representing the multiple

<

smqllest‘poasible angle (or largest cosine)\of XZOX1 is represented |

by xloxza since a vector perpendicular ‘to Ox2 must meet the

—~—~r
vector perpendicular to OX1 within the unit circle., The largest

possible angle is xlox; for the same reason, The actual vector

X, mugt lie between Xé and Xy

» "~
<

2
‘ The dotted lines from the origin'to y+ and y- represent the

-

two vectors where the commonality would be zero since the multiple

correlation would be V - or ¢ . If xl and x2 are .
yl y2 OA +OB )

correlation will terminate between y- and y' in which case the

multiple correlation is larger than / r and the commonality
yl y2
is negative. Also, if xl and X2 are correlated lowly enOugh then

the terminis of the multiple correlation vector would fall between

~

y+ and y" in which casge the commonality would be negative. If the

vector representing the multiple correlation terminates between
y+ and y- , then the vector is shorter than ¢ and the
yl y2

)

commonality is positive. o .




he squares of two

vectors and thus should not be congidered a variance in itself,
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5.0 Scts of Viriables

Commonality tables become unmanageably large for even a.

4

)
fairly\modest numﬂer of regrepsors. For example, if there ane ;
4 \\ 3

10 regresaors the number of. lines in the table is lﬁq24.‘f1t is- :

-

therefore important to'reduce the table in size. \ *

One .method is'to group the regressors into logicaliy

L4

- A
similar, mutually exclusive sets and.perform the common&eity analysi}"

on ‘the sets. The SMC's used for the commonality analysim are the
\

SMC.'s. for all possible combinations of sets of variables, not of
A

individual regressors. . : *

"The commonality %able computed .in this manner is a summ ry

gressors., Considering the examplé in section 3, the”foﬁr variables

may be grouped into two sets, set A containing x1 and xz,“hnd se

containiqg,x3 and X, o The;componality and uniquenesses of the

sets are

33
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o COmmonality analysis with sets of variables may reguire mafrix inver-

- . possible numerical instability.

The comﬁonality

The algorithm

-showr in section 7 is also appropriate for .sets using
the SMCs of all possible sets of variables as input.

sion.with g large number of variables, Some of these variabl may be

highly correlated with the result that the analysis is subj t to.

the corrolations among’ the independent variables are not extremely hlgh

Numcrica] experiments by’Beaton,

Rubin?Fand Barone (1972) have shown’ that.
vcry high collinearity will affect regression coefficients substantially,

but do not affect sqnaredf%ultiple correlations too seriously Doudble

prccisxon is probably sufficient to avoid most problems of this sort.

'




5378

Figure 5. Comonalit;r\ table for sets




B 1s estimated: by regression analysis. Since 2'Z = I, the

< . Y-

. Créager and Boruch (1969) suggest a combination of factor

v

analysis and regression analysis as an alternative to commonality

analysis. Using the notatiou of this paper, they argue that the

matrix X may be factored as

X = ZF

~ -~

-

H
where Z.,i8 an orthogonal Nxf matrix of factor scores and F is -,

an fxm matrix of factor loadings‘ Using maximum likelihood

techniques (see Joreskog, 1967), one can estimate the matrix F

such that

wﬁere R is in general an approximation to the correlations

: Yy = ZFB + ¢

¥

-

Ul

’predictable variance 05 is simply the sum of squares of the

clements in the vector FB8 .

~ o

H

AW
>

4
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If one can hypothesize an underlying factor structure,
/

.then the Creager and Boruch method is the natural way to identify

t

the contributions df the factors, and the method may be useful

for exploration of found commonalities, but commonality analysis

~

differs in that it simply locates elements of the SMC in the

]

given variables without postulating underlying, orthogonal variables.

It would seem that the two methods complement-each other and may

be used together, commonality analysis perhaps helping .develop

the factor hypothesis.




6.0 Multivdriatc Commonality

Multivariate commonality is a technique for assessing the common and

uleue predictability of several regressors or sets of regressors on a set

of B2 1 regréssands. fhe technique is a simple generalization of univari-

ate commonality and the results of th
.
. p is unity. Multivariate commonality is to multivariate analysis very much

\

as\univariate commonality is to regression analysis.
!

e two will be the same if the value of

\\One simple method of assessing the commonalities of several regressors

on a set of regressands would be to compute a cormionalily table for each

regre and, then sum the several comonality tables 1nto a single multivari-

ate tabjlc. Although this might be appropriate for some problems, this

sprocedure might overweight the commonality if two or more of the regressands

were very highly correlated with each other and similarly correlated with

the regressors. A high conmonality for one of the regressands would also

show uyp in ‘the commonality tables of its correilates with the result that

the multivariatc comonality in the sumary table would be very large or, °

in a sense, counted twice or more. This procedure also varies from common

practice in multivariate analysis, )

other transformed regressands. The transformed variables contain all of the releva

information in the original regressands and can be transformed back to the

~original if needed. Since the transformed regressands are uncorrelated, the

prediclion of one is not ashociatcd with the prediction of

multivariale commonaliiy proposed here can be thought b ag berforming a

J8
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T +

‘transformation to unit orthogonal regressands, then a‘univariate commonality
analysis on each tran"formcd regrossand and summing the univariate commonal- °
Wy into a mudLivarinte commonnd .y table, T ' . .

There arc muny ways to transform the regressands to unit orthogonal

orientation. One way is to perform a principal components analysis of the

regressands, compute component scores, and. then rescale the caomponent scores
for unit variance. Alternatively, a Cholesky transformation of the regressands
can be performed, and residual scores with u%it orthogonal\orientation com-
puted. - This procedage is equivalent to computing a Gram-Schmid decomposition
of the regrcssands with the result that the first regressand is simply
rescaled, the secoud is taken as a residual from the first, the third as a
«sidun] trum Lhe fivst and Sseeond, and so forth. Since the Gram-Schmid
s method is .computationally simplcr-and the commonality tables”under either
proceduif are identical, the GramJSchmid method is used here.

The actiual calculation of multivariate commonallties is only very
slightly more complicated and expensive than univariate commonality The
transformcd regressands do not need to be computed for each member of the
samplc.' A correlation matrix including both the (untransformed) regressands
and thc repressors is computed. ‘the correlation matrix of the regroessands
can be transformed using the MSTD operator which also transforms the corrcla-
tions of the regressors and the regressands. The calculation of all possible
regressions of the regressors on all of the transformed regressands ¢can be
computed using the same’ number of SWPs as in the univariate case. (For a‘
'complete discussion of the MSTD and SWP operators, see Beaton (1964).) fThe
SWP operator computes the set of terms of the form 1 - R where the Ra )

are the squircd multiple correlaflons which must be summed. This swn is called
ERIC T 39
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. ' 4 o .
the trace of the explained cross-products matrix. The traces for all combina-

tions of prcdictors may Qe converted to \\ltivariate commonalities by the ‘:
.

Barone algorithm discussed in the next section.
Multivariate commonal ty is related to multivariatg hypothesis testing

\

.in & manncr analogous to the relationship of univariate commonality to

Ly

regular lesting. If the Beaton operators are used, the matrix of sums of )
squarcs and cross-products of thé residuals is computed after each regression
"This matrix is called - E where the subscript 8 represents the particular
regression thé//uas removed. The trace of E is the unexplained sum.of

squares and_thus P minus trace (E ) is the explained sum of squares.

The matrix E has the property that its latent roots are
. i
l - 12 where A is the canonical correlation between the re-

gressors in s and all regressands. The determinant of B is

Wilks' A which can be used for testing the hypothesis that there

18 no predictive power in)the regressors in 8. /
) Each of thc\multivariaté uniquenesses can be tested for
significance. To test a particular uniqueness, one computes the

Es for that uniqueness, i;e,, ‘sweeps allﬂother regressors
(or sets of regressors), and comput;s cﬁé matrix E, tne residual
after all regressors are swept. Wilks' A statistic is
b ot @
det (Es)
The A étatistic may-be used to test the hypothesis that the
pérticular multivariate uniqueness is zero which is equivalent to

L4

tcstiug that the rcgressor(s) add nothing to the canonical .

4correlationsh

»

40
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.

The races from which the multivariate commonalities are compu&e& are

ot bounded by zero uud unity ny nre the dquared multiple corrolnt]onn. 1f

the rcgreqsands are completely pred1ctab1e, then the trace would be P » the

number of pggressandSa However, the traces associated with panticulan

regressors or combinatlons of regressors may have upper bounds substantially

B
less than p . lIn fact, the maximum_ trace for a single regressor is unity. .
The maximum trape for a set of regressors is the number of regressors or the

numbcr of rogreésandu, yhichever is smaller.

Since the same traces cannot
be lgrge, the coLm

onalities may seem disappoiptingly small. Each commonality

should be judged in comparison to its maximum.




7.0 Analysis of Variance

Commonality analysis can be a ugefyl agjunct to non-

orthogonal analyses of variance and covariance. The analysis

"of variancesis a. procedure to partition the total gsum of squares

-

of a "dependent" variable into parts associated with one or more

*
»

"independent" variables or factors for the purpose of estimating

mean squares and ‘testing hypotheses. We consider here only
situations in which there are at least two factors. 1If the ex~
pcrimgntai design is balanced, then the partitioning of the sum

of‘sqgares is straightforward and the part associated with each

. factor is distinct, thus the sum of the parts associated with

each factor plus the error sum of squares add to the total sum
of squares. A balanced or orthogonal analysis, therefore, does

break up the whole/into its parts. If the design is/non-orthogonal

i.e., not balanced, then parts of the totay sum of squares can be

attributed to more than one factor with the result that the total

-

sum of squares 1s not broken up into distinc parts associated with

factors or their interaction. \

B

‘There are a number of ways in which non-orthogonal analyses

can be performed. One way is to order the factors a priori and
assign the common part of the sum 6f squares to the first factor

»

in fhé‘o;de%ing, thereby assuring the allocation of all squares

to some factor or to error. ‘ . .

Another procedu1e is to treat each factor or interaction

separately 80 that all other factors are fitted befqre any hypothesig .

is tested. lhis procedure is equivalent to treating each hypothesis

’

42




7'5'“:iaer the model

test as a test of the‘significance of regressiou_coefficients. Con~

TR Y A ; |
.“where‘thé uatrix X contaiu; dummy variables corresponding ‘to row, -
ibolpmn, and internction cffect: and the vector B is- partitioned
’qécor&inglyu Using the notation from the previous sections, let
xé bc the subset of duymmy variables tepresenting a set of effects -
',(&.g. thg Fow effects) The test of the significance of the

corresponding parameters B is formed by specifying the hypothesis

-

) gs : Bs =0 i .- ' : i

and the alternate model
)

M.: y.= x;B o } ‘" - -

The sum of squares due -to the 88 is theg"

—

';éinch Ms implies Hs is true,

C S8R ~ yrxo(xix) Ty -y x(x'x> ‘

- and the appropriate 4 statistic is

W

FM’ o ‘ 88(8;)/n§
: N-n (7'y=y' X' %) "X 1y) / (Nen)

Each sct of cffects can be tested using this procedure although the

ton

.

Ls are not arriculy independent as is also the case witl orthogonu]

designs, It ig convenient to collect the sums of squares, degrecs

of ftucdom,;mean squares, &nd F statistics in .an analysis of variance

table, rHowever, the sums -of squazes allocated to various factors

%




plus the error-sam of squares.do not add up to the total, thus
"the whole is not éomplgtely divided iqto'its ﬁarts.

- -The aanysiq of v;rinnce can also be apfroached through
commonalit§ analysié. The total sum of squares can be partitioned

3

of sets of effects, These common and Gnique elements added to

N L3

the error sum of gquares add to the total sum of squ{res; The
testé‘of the uniquenesses aré equivalent to the tests of the sets
of effects shown‘agove. However, since there are ao hypotheéip
tests available for éommoﬁ*elements, part of the motivatiqn.for
partitioning variance is 1lost. ‘

Commonality analysis; therefore, gives n;w information for .
non-orthogonal analysis of variance since one c#h investigate the

gums of squares that either did not center into any hypothesis test

] -

or were entered into more than once.:«

‘ﬁ .

into parts attributable to each set of effects and cach combination ‘




8.0 Klgorithmﬁ ’ . S o ' : "

(ummonulity onalysin requireu {two computatidnal steps: first,

7

computing all possible SMC's and, then’ computing the commonality elements.

Yhis section discusses the two phases and presenté a complete FORTRAN sub-

routine,

A vector of all possible SMC can be computed using the algorithm

of‘Shdtzoff (1968). Shatzoff uses the sweep (sWP) operator (See Beepon
(196&5 or Demputer (1969) which wdds and deletes varisbles to a multiple ‘
regreesion equation. The SMC"s must be computed in the ordet show:igzie
. The Shatzoff algorithm has the property that each of th 2 -1 sweeps
computes & different SMC.. Tge‘subprogram presented below modifies the
meghod‘by replenishing iﬁe matrix occasionally in order to avoid buiidup

of computational error, :

.

Although commonality elements can be computed by first forming, thén

' solving 'simulteneous equations, an algorithm due to Barone is simpler for

hand cgleulation and requires far less computer memotry., " The algorigpm

requires us inpul. the SMC's.  An additional dummy SMC of value zero as

»

~the'zeroth,e1e@ent is also needed,

Each element in an m ~variable commonelity table may'be'represented

as Cs where s 1is the subscript containing né < m integers in
* .
numerical order and representing the indiees of the variables included .
4 ) ’ ‘ —-— "
in"C . 1he complementary subscripl s contains the n§=m-nS indices

3

not’included.in» g, If all m indices are included in. s , then s

is considered to contain no indices.
.t The Barone algorithm begins the commonality computation of any

- dement, “r by forming «n cquation with the first c¢lement as minus

45 |



* smmonnl] By

~ Element G .

o ol 1] 2 f12] 3 |13-]23 |123] b [ab Jou {12b F3n a3k |23
01;3,4. afifr fafiferfafafa]a]a 1 fal1 |
Cost 2 1 |12 -1 1 -1 -1
13k 1 2 1{a R EN ER
a -1 1 1
1o, |11 1] |
Cp, -1 1 . 1
n SR NE!
lw Uy -1 |
123 SR B N I I R I P O]
23 el I A 1
Ly -1]1 /\_.,1
35 B =g
12 1|1 }a

= U, -1
=Y ‘ -1

f oy e wm wm o s b

»

Piga T.1. Cogxmonality equations.




-

3

Rig , that is, the SMC with complementary subscript and neéatiﬁe sign. ..
‘uch) index in s, is then appgnded one at & time to those alréady in 8

to form a set of subseripts n'; cach GMC with oné of the subn;riptu

in 8' is added Lo thg.equation."The integers in s are then appended to

8 two at a time to form subscripts 8' , and the corresponding SMC

are subtracted from the equation. This process continues with more and
more indices in s appended s and with the sign of the addition
chapging at each step until all ng indices in s afe uged.

For example: let us find the equation for C13‘ 15 én anaiysis with
four voriables (n=1L4), The complement of the'subécript 8 = 13
is § = 2h , thus the first element is

2 ) .
'Ryzh : '

Appending the ¢lements of ‘& one at a time to 8 s the subscripts in.

8' = (125,234) and thus the next elements added to C,4 are
B 2 2
' ‘ * Rypon * Rypgy

Finally, appending the elements of 8 two at a time, we have 35'' =

(1234)  and thus next clement subtracted Tfom Cl3 is

2
“Byre3y
ﬂ%q.eduatioﬁ for C13 is then
, .2 2 2 2
, 13 = “Fyou * Ryron * Bypa - Rypogy

-

Yor another exumple , Cl23h ‘has a complementary subscript 0 ,

" thus the rirat elenent Rg is sublracted

’,

-0 ,

S, : 2 47




B I 2 2
,+Rn+RY2+}(B+RYh .

- then thc\yalues selected. by pairs of integérs are subtracted,

v e

2 2 2 2 2 le
“Ry12 “Ryiz ~Ryqy “Byog ~Ryoy wRyq), »

v

2 2 2 2
* Rpez * Ryroy *Rypq) * Byogy s

th, 411 subscripts is subtracted, - ‘

2
Ry1y ~Ryos -
2 2 2 .. 2
* Ry123* Ryaan Ryl * Bypsl “Ryips) -

The equations for all commonalities for = 4 afe shown in Figure

1.3, ‘J')m;lufi. hand column iontnins the commonality élemgnt for a four
variable problem end the right hund columns contaim\the squared multiple
correlations und their relative location in & computer rdi;i'am. The main

-

,bbdy of the figure contains the ‘matrix G vhich may be used in the equation

1




$v .

T e,

10 compute the commonalities from the vector o?ASMC's. The mht?ix G
. wnn ecomputed uning, the Barone ulgorithm not by metrlx inversion, but
my be” checked by rnrmlné n moatrix G’] defining the rulntionuhip of
the c  and SMC in & matrix, then multiplying 66l which must

result in an identity matrix.

The reader may verify the matrix G and the commonality table in
Figure 3.2 by multiplying G Dby _the vector gf in Figuréé;—%.

A compuﬁe subroutine for computi;g commonalities is shown in
Figure 7.2, The ubroutine accepts as input a cross-produc%s or corre-

lation matriX, computes-all possible SMC, and then a commonalfty table,

Several regressandg\and sets of regressors may be used. The program

(\loc:'. not. compute multivaria
The yumputcr pr;urnm uscs Lhe binary natuXxe of cpqpuhe}s o advantiage.
The presenée or abscnce éf g(suﬁscript is coded by\a zero or one bit in
the appropriaté pésition 9¢ a memory register. The binary word is
‘evnluated us the location in SMC table of the appropriate element, For

example, the .complement.of Céh o8

- - 2
comp (Cp),) = 0101, = 10C(5) = Ry, .

'"he variables position are reed from right to left, thus’OlOl2 indicates

the  presence of varinbles Xi ﬁnd X3 .

The endling sequence wd definitlon of parameters i shown in

Mehre 1.2 .




L S 2. ‘
| CMLING SEQUENCE ,
CALL COMNMON (C,HPT,LC,NC, Li NH 1K JNK, TTTL, LD, ND, DS HACR)

PARMMETEIC - L o L

"INPUT CHOSE-PHODUCES MATRIX - -

¢ (M1 MPL)
o DIMENSION OF ¢ ~ ,

MPI '
INTEGER VECTOR CONTAINING THE ROW (COLUMN)

- NUMBERS OF THE CONCOMITANT VARIABLES,

“Le (Ne)

'NUMBER OF CONCOMITANT.VARTABLES DEFINED IN _

'chlo . . - s

‘e

" NC

LH _(NH)

‘

INTEGER VECTOR CONTAINING THE ROW (COLUMN)
NUMBERS OF THE INDEPENDENT .VARIABLES,

Ni : . 'THE NUMBER OF INDEPENDENT VARIABLES DEFINED
L. ., IN ")mL!\. . ) .

INTEGER VECTOR CONTAINING THE NUMBER OF
INDEPFNDENT VARTABLES 70 BY GROUPED FROM 'LHE -
. LY LISY Y0 FOKM BACH OF 91 NK YSETSY USKD
- ‘ IN TS COMMONALITY ANALYSIS. THE SUM OF THE
' ELEMENTS IN THIS VECTOR MUST EQUAL NH.

IK (NK) - s

=
A

NUMBER OF SETS T0 BE FORMED USING THE 'IK'
. LIST. . ‘ :
ANY 'BCD' HEADING OF LESS THAN 120 CHARACTERS,

y THIS WILL BE PRINTED- PRECEEDING EACH COMMON-
ABILITY TABLE, ' '

5
[

LD p ¢ INTEGER VECTOR CONTAINING THE ROW ‘(COJ.UMN)
' : NUMBERS OF THE DEPENDENT VARIABLES. A

‘ SEPARATE COMMONALITY TABLE WILL BE COMPUTED

- ' FOR EACH DEPENDENT VARIABLE. : :

ND ¢ NUMBER OF DEPENDENT VARIABLES -

Ho - (KD) ¢ THIG VECGHOR MUGY CONUATN 1HE ALPUANUMBIRIC

) ‘ . CTIVLE OF BACH DEPENDENT VARTABLE, ‘"B TI'PLKS
T i Musy CORRESPOND TO THE VARIABLES DEFINED IN .
Y ‘ THE 'LD' LIs? O) DEPENDEN'} VARTABLES,

' i .

Fig. 1.2. Univuriate conmonality program,
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HACR (NK) -3 THTS VECTOR MUST CONTAIN THI' ALPHANUMBIRIC
. ) TUPLES OF BACH O 'MiIK UNK' 5000510 DRIFINED BY
TR VLY, IR LA,

CALLED .ROUTINES
SWPSKT ,NEWPG

EXAMPLE

GIVEN: 'C' IS A 10 x 10 CROSS PRODUCTS MATRIX.
THERE ARE 2 DEPENDENT VARIABLES LOCATED IN POSITIONS
: 1-and 2 IN THE MATRIX. .
" THERE ARE 8 INDEPENDENT VARIABLES LOCATED IN POSITIONS
. 3 thru 9,
' POSITION 10 CONTAINS THE VARIABLES CORRESPONDING TO
THE OVERALIL MEAN. ,

IN THIS EXAMPLE WE WANT TO ACCOMPLISH THE FOLLOWING FOR EACH
T, OF THE 2 DEPENDENT VARTABLES . .

1’) ADTUST 'THE GROSS PRODUCTS MATRIX BY REMOVING TMI
GRAND MEAN ’

2) FORM 3 'SETS' FROM THE INDEPENDENT VARIABEES. TIE
\ FIRST SET CONSISTING OF VARIABLES (3, 4 and 6), _
THE SECOND SET OF VARIABLES (5, 7) AND THE THIRD SET
OF VARIABLES (6, 8, 9).

3) PERFORM A COMMONALITY ANALYSIS USING THESE 3
SETS OF INDEPEMDENT VARIABLES.

THE FOLLOWING FORTRAN STATEMENTS WILL ACCOMPLISH THE REQUIRED
ANALYSIS, : ,

" DIMENSION c(1o,io.) ,LH(8)‘,Lc(i),IK(3),LD(2),HDS(2),HACR 3)

DATA 1H/3,4,6,5,7,6,8,9/ ,NH/8/

DATA 1K/ 3, 2, 3,/ ,NK/3/

DATA - 10/2.0/ NC/1/

DN LD/ 1 2 ND/2/ fae

DAEA - BDS/GHDEP,,  1,61bkp, 3 _
DATA  LACK/GHSET Y 6USEr 2 , 6HSET 3/

CALL cdmmon(c,1o,nc,'Nc,LH,NH,JK,NK,leu ANY HEADING, LD,ND,HDS3,
1 ' HACR) '

Fig. ‘(.2 (Cont'd). Univariate commonality program.
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